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LETTER TO THE EDITOR 

Least-squares technique for resonances 

B Gazdy 
Institute of Physics, Technical University of Budapest, 1521 Budapest, Hungary 

Received 8 March 1976 

Abstract. A modified version of the least-squares variational technique is proposed to 
calculate resonance energies and widths with the help of the coordinate-rotation method. A 
numerical example is given for a model potential. 

A narrow scattering resonance is always associated with a long-lived decaying state 
which behaves physically, in many respects, like a true bound state. By introducing a 
generalized non-Hermitian scalar product and using the resonance definition of Siegert 
(1939), Berggren (1968) showed that for finite-range potentials, the bound states and 
any finite number of proper resonant states could be completed by an appropriately 
chosen set of continuum states. The physical resemblance between bound states and 
narrow resonances was specially demonstrated by Gyarmati et a1 (1972), calculating 
expectation values in Gamow states. 

It is desirable, however, to develop approximation techniques for computing 
resonance energies and widths simultaneously. Recently, Bain er al(1974) have applied 
the Rayleigh-Ritz variational method combined with complex contour integration to 
Gamow (or Siegert) states. The Rayleigh-Ritz method has also been used by Doolen et 
a1 (1973,1974) and by Raju and Doolen (1974) but with the trick of the rotation of the 
Hamiltonian in the complex coordinate space. These two methods, however, are not 
based upon an extremum principle, since the functionals applied are only stationary 
around the complex resonance energy, and the convergence is questionable in the case 
of large basis sizes. 

Here, we propose an alternative variational technique for the calculation of 
Square-integrable eigenfunctions and complex or real eigenvalues of the rotated 
Hamiltonian. The variational method is the well known least-squares method, exten- 
sively applied to non-relativistic bound state (Preuss 1962) and scattering (Ladanyi and 
Szondy 1971, Read and Soto-Montiel 1973, Schmid and Schwager 1972), as well as 
relativistic bound state (Ladanyi 1968) and scattering (Ladanyi 1969) problems. 

Applying the coordinate-rotation r 3 r eie to the total Hamiltonian H, we get 

H = H ~ +  v(~)+-N' = e - " ' ~ ~ +  V(re''), 

where HO and V are the kinetic- and potential-energy operators, respectively. The 
"Piex ekwvalues of He, W,, = E,, -,$I?", with vanishing boundary condition at 

can be identified as the resonance poles of the analytically continued S-matrix 
for the original problem (Lovelace 1964), and are independent of 8 for 
lag WnI<26<u, where a depends on the analyticity domain of the potential V 
(*Dih and Combes 1971). 
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The following eigenvalue equation has to be solved: 

($(o) = 0, $ -'0)7 (1) (H" - w)$=.LJI = 0, r-oD 

where L is a linear, but not self-adjoint, operator on the Hilbert space, for W complex. 
The trial function is 

N 

n=l  
$'= an6n7 

where &, &, . . . , 4N are elements of a complete set of quadratically integrable basis 
functions and the coefficients U,, are complex linear variational parameters. Let P", 
K > N ,  be a projection operator {(PK)2 = PK, (PK)' = P"}, projecting onto an arbitrary 
K-dimensional subspace of the Hilbert space. Let us define the square of the length of 
the projection of the vector I#) (or the square-error expression of $') in the 
K-dimensional space by 

U?$', E, r) = ($'LPK, P"U?/($', $'I, (2) 

where the denominator means a formal norm of $'for the square-error expression. One 
has U" 3 0 by construction and the equality holds if $' is the exact solution of equation 
(l), or w) is, accidentally, orthogonal to the subspace defined by PK. The variational 
requirement SaK( $') = 0, for E, r fixed, leads to a positive symmetrical 2N X 2 N matrix 
ei envalue equation, where the lowest eigenvalue &E7 r) yields the minimum of 
U ($7 for E, r hed. The role of the norm ($', $') in equation (2) is only to exclude the 
trivial solution $' = 0, of equation (1). 

We are now in a position to calculate the least-squares approximation of the 
resonance parameters E,, and r, by minimizing &E, r) according to the conditions 

I 

and 

Although the energy W, is initially unknown, an estimate of the resonance position as 
starting value for equations (3) can be made, for instance, by the stabilization method 
(Hazi and Taylor 1970). 

Since &E, I+) is obtained by varying only the linear parameters in $', an optimiza- 
tion is needed with respect to the nonlinear scale parameters involved, in order to get 
the best convergence. 

Here we note that our procedure, though conceptually different, reduces to that of 
Froelich and Brlndas (1975) by choosing 6 = = 0, PK = 1 and ($', $') = ($', $') = 1. 

As an illustrative example, we have computed the resonance parameters E and r for 
the potential V(T) = 73r2 e-', where the exact values were known (Bain er ul 1974). 
Table 1 shows the resonance energy E and width r with different values of K, K > N, as 
the number N of the basis functions increases. The calculation was carried out by using 
Slater-type functions: 

9, = r" e-"', (n= 1,2,. . . , N), 
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Table 1. Calculated resonance parameters? for the model potential; d = K- N. 
-~~ 

Energy (au) Width (lO-'au) 

N d = 3  d = 5  d = 3  d = 5  

4 3.3816 3.3898 2.0538 2.1116 
6 3.4032 3.4100 2.5670 2.5612 
8 3-4283 3.4271 2.5563 2-5550 

10 3-4266 3.4264 2.5545 2.5548 
12 3.4264 3.4264 2.5548 2.5549 

t Exact values: E = 3.42639 au, r = 2.5549 x lo-* au. 

and 

j = 1  

with 

where the nonlinear parameters a and /3 were taken to b 

. , K),  

3.5. The rotati n angle 8 was 
0.5 rad. Several calculations, not presented here, show that the final results do not 
depend sensitively on the variation of a, p and 0 for large basis sizes, N a  10. 

Finally, it should be emphasized that, in the case of interacting many-body systems, 
the projection operator PK, N<K<co, included in equation (2) does simplify the 
calculation of the necessary matrix elements. 
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